Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 96
2.
Infant Behav Dev ; 75: 101929, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38581728

Previous studies underscore the importance of social interactions for child language development-particularly interactions characterized by maternal sensitivity, infant-directed speech (IDS), and conversational turn-taking (CT) in one-on-one contexts. Although infants engage in such interactions from the third month after birth, the prospective link between speech input and maternal sensitivity in the first half year of life and later language development has been understudied. We hypothesized that social interactions embodying maternal sensitivity, IDS and CTs in the first 3 months of life, are significantly associated with later language development and tested this using a longitudinal design. Using a sample of 40 3-month-old infants, we assessed maternal sensitivity during a structured mother-infant one-on-one (1:1) interaction based on a well-validated scoring system (the Coding Interactive Behavior system). Language input (IDS, CT) was assessed during naturally occurring interactions at home using the Language ENvironment Analysis (LENA) system. Language outcome measures were obtained from 18 to 30 months of age using the MacArthur-Bates Communicative Development Inventory. Three novel findings emerged. First, maternal sensitivity at 3 months was significantly associated with infants' productive language scores at 18, 21, 24, 27, and 30 months of age. Second, LENA-recorded IDS during mother-infant 1:1 interaction in the home environment at 3 months of age was positively correlated with productive language scores at 24, 27, and 30 months of age. Third, mother-infant CTs during 1:1 interaction was significantly associated with infants' productive language scores at 27 and 30 months of age. We propose that infants' social attention to speech during this early period-enhanced by sensitive maternal one-on-one interactions and IDS-are potent factors in advancing language development.

3.
Brain Res Bull ; 212: 110958, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38677559

Education sculpts specialized neural circuits for skills like reading that are critical to success in modern society but were not anticipated by the selective pressures of evolution. Does the emergence of brain regions that selectively process novel visual stimuli like words occur at the expense of cortical representations of other stimuli like faces and objects? "Neuronal Recycling" predicts that learning to read should enhance the response to words in ventral occipitotemporal cortex (VOTC) and decrease the response to other visual categories such as faces and objects. To test this hypothesis, and more broadly to understand the changes that are induced by the early stages of literacy instruction, we conducted a randomized controlled trial with pre-school children (five years of age). Children were randomly assigned to intervention programs focused on either reading skills or oral language skills and magnetoencephalography (MEG) data collected before and after the intervention was used to measure visual responses to images of text, faces, and objects. We found that being taught reading versus oral language skills induced different patterns of change in category-selective regions of visual cortex, but that there was not a clear tradeoff between the response to words versus other categories. Within a predefined region of VOTC corresponding to the visual word form area (VWFA) we found that the relative amplitude of responses to text, faces, and objects changed, but increases in the response to words were not linked to decreases in the response to faces or objects. How these changes play out over a longer timescale is still unknown but, based on these data, we can surmise that high-level visual cortex undergoes rapid changes as children enter school and begin establishing new skills like literacy.

4.
Curr Biol ; 34(8): 1731-1738.e3, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38593800

In face-to-face interactions with infants, human adults exhibit a species-specific communicative signal. Adults present a distinctive "social ensemble": they use infant-directed speech (parentese), respond contingently to infants' actions and vocalizations, and react positively through mutual eye-gaze and smiling. Studies suggest that this social ensemble is essential for initial language learning. Our hypothesis is that the social ensemble attracts attentional systems to speech and that sensorimotor systems prepare infants to respond vocally, both of which advance language learning. Using infant magnetoencephalography (MEG), we measure 5-month-old infants' neural responses during live verbal face-to-face (F2F) interaction with an adult (social condition) and during a control (nonsocial condition) in which the adult turns away from the infant to speak to another person. Using a longitudinal design, we tested whether infants' brain responses to these conditions at 5 months of age predicted their language growth at five future time points. Brain areas involved in attention (right hemisphere inferior frontal, right hemisphere superior temporal, and right hemisphere inferior parietal) show significantly higher theta activity in the social versus nonsocial condition. Critical to theory, we found that infants' neural activity in response to F2F interaction in attentional and sensorimotor regions significantly predicted future language development into the third year of life, more than 2 years after the initial measurements. We develop a view of early language acquisition that underscores the centrality of the social ensemble, and we offer new insight into the neurobiological components that link infants' language learning to their early brain functioning during social interaction.


Brain , Language Development , Magnetoencephalography , Social Interaction , Humans , Infant , Male , Female , Brain/physiology , Attention/physiology , Speech/physiology
5.
J Child Lang ; 51(2): 359-384, 2024 Mar.
Article En | MEDLINE | ID: mdl-36748287

Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies have assessed its effects on longer-term outcomes. We assess the effects of parental quantity of speech, use of parentese (the acoustically exaggerated, clear, and higher-pitched speech), and turn-taking in infancy, on child language at 5 years. Using a longitudinal dataset of daylong LENA recordings collected with the same group of English-speaking infants (N=44) at 6, 10, 14, 18, 24 months and then again at 5 years, we demonstrate that parents' consistent (defined as stable and high) use of parentese in infancy was a potent predictor of lexical diversity, mean length of utterance, and frequency of conversational turn-taking between children and adults at Kindergarten entry. Together, these findings highlight the potential importance of a high-quality language learning environment in infancy for success at the start of formal schooling.


Language Development , Language , Infant , Adult , Child , Humans , Communication , Speech , Child Language
6.
Behav Res Methods ; 56(3): 1936-1952, 2024 Mar.
Article En | MEDLINE | ID: mdl-37145293

The Language ENvironment Analysis system (LENA) records children's language environment and provides an automatic estimate of adult-child conversational turn count (CTC) by automatically identifying adult and child speech in close temporal proximity. To assess the reliability of this measure, we examine correlation and agreement between LENA's CTC estimates and manual measurement of adult-child turn-taking in two corpora collected in the USA: a bilingual corpus of Spanish-English-speaking families with infants between 4 and 22 months (n = 37), and a corpus of monolingual families with English-speaking 5-year-olds (n = 56). In each corpus for each child, 100 30-second segments were extracted from daylong recordings in two ways, yielding a total of 9300 minutes of manually annotated audio. LENA's CTC estimate for the same segments was obtained through the LENA software. The two measures of CTC had low correlations for the segments from the monolingual 5-year-olds sampled in both ways, and somewhat higher correlations for the bilingual samples. LENA substantially overestimated CTC on average, relative to manual measurement, for three out of four analysis conditions, and limits of agreement were wide in all cases. Segment-level analyses demonstrated that accidental contiguity had the largest individual impact on LENA's average CTC error, affecting 12-17% of analyzed segments. Other factors significantly contributing to CTC error were speech from other children, presence of multiple adults, and presence of electronic media. These results indicate wide discrepancies between LENA's CTC estimates and manual CTCs, and call into question the comparability of LENA's CTC measure across participants, conditions, and developmental time points.


Multilingualism , Speech Perception , Adult , Infant , Humans , Child, Preschool , Reproducibility of Results , Language , Speech , Language Development
7.
Dev Sci ; 26(6): e13391, 2023 Nov.
Article En | MEDLINE | ID: mdl-36999222

Interventions focused on the home language environment have been shown to improve a number of child language outcomes in the first years of life. However, data on the longer-term effects of the intervention are still somewhat limited. The current study examines child vocabulary and complex speech outcomes (N = 59) during the year following completion of a parent-coaching intervention, which was previously found to increase the quantity of parent-child conversational turns and to improve child language outcomes through 18 months of age. Measures of parental language input, child speech output, and parent-child conversational turn-taking were manually coded from naturalistic home recordings (Language Environment Analysis System, LENA) at regular 4-month intervals when children were 6- to 24-months old. Child language skills were assessed using the MacArthur-Bates Communicative Development Inventory (CDI) at four time-points following the final intervention session (at 18, 24, 27, and 30 months). Vocabulary size and growth from 18 to 30 months was greater in the intervention group, even after accounting for differences in child language ability during the intervention period. The intervention group also scored higher on measures of speech length and grammatical complexity, and these effects were mediated by 18-month vocabulary. Intervention was associated with increased parent-child conversational turn-taking in home recordings at 14 months, and mediation analysis suggested that 14-month conversational turn-taking accounted for intervention-related differences in subsequent vocabulary. Together, the results suggest enduring, positive effects of parental language intervention and underscore the importance of interactive, conversational language experience during the first 2 years of life. RESEARCH HIGHLIGHTS: Parent coaching was provided as part of a home language intervention when children were 6-18 months of age. Naturalistic home language recordings showed increased parent-child conversational turn-taking in the intervention group at 14 months of age. Measures of productive vocabulary and complex speech indicated more advanced expressive language skills in the intervention group through 30 months of age, a full year after the final intervention session. Conversational turn-taking at 14 months predicted subsequent child vocabulary and accounted for differences in vocabulary size across the intervention and control groups.

8.
J Neurosci ; 43(9): 1590-1599, 2023 03 01.
Article En | MEDLINE | ID: mdl-36746626

Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies have assessed the effects of parental language input and parent-infant interactions on early brain development. We examined the relationship between measures of parent and child language, obtained from naturalistic home recordings at child ages 6, 10, 14, 18, and 24 months, and estimates of white matter myelination, derived from quantitative MRI at age 2 years (mean = 26.30 months, SD = 1.62, N = 22). Analysis of the white matter focused on dorsal pathways associated with expressive language development and long-term language ability, namely, the left arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). Frequency of parent-infant conversational turns (CT) uniquely predicted myelin density estimates in both the AF and SLF. Moreover, the effect of CT remained significant while controlling for total adult speech and child speech-related utterances, suggesting a specific role for interactive language experience, rather than simply speech exposure or production. An exploratory analysis of 18 additional tracts, including the right AF and SLF, indicated a high degree of anatomic specificity. Longitudinal analyses of parent and child language variables indicated an effect of CT as early as 6 months of age, as well as an ongoing effect over infancy. Together, these results link parent-infant conversational turns to white matter myelination at age 2 years, and suggest that early, interactive experiences with language uniquely contribute to the development of white matter associated with long-term language ability.SIGNIFICANCE STATEMENT Children's earliest experiences with language are thought to have profound and lasting developmental effects. Recent studies suggest that intervention can increase the quality of parental language input and improve children's learning outcomes. However, important questions remain about the optimal timing of intervention, and the relationship between specific aspects of language experience and brain development. We report that parent-infant turn-taking during home language interactions correlates with myelination of language related white matter pathways through age 2 years. Effects were independent of total speech exposure and infant vocalizations and evident starting at 6 months of age, suggesting that structured language interactions throughout infancy may uniquely support the ongoing development of brain systems critical to long-term language ability.


White Matter , Child , Adult , Humans , Infant , Child, Preschool , Language , Language Development , Brain , Speech
9.
Cereb Cortex ; 33(7): 4116-4134, 2023 03 21.
Article En | MEDLINE | ID: mdl-36130088

Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.


Magnetoencephalography , Mothers , Female , Humans , Child, Preschool , Magnetoencephalography/methods , Brain , Diencephalon , Speech
10.
Front Hum Neurosci ; 16: 922552, 2022.
Article En | MEDLINE | ID: mdl-36457757

Longitudinal studies provide the unique opportunity to test whether early language provides a scaffolding for the acquisition of the ability to read. This study tests the hypothesis that parental language input during the first 2 years of life predicts emergent literacy skills at 5 years of age, and that white matter development observed early in the 3rd year (at 26 months) may help to account for these effects. We collected naturalistic recordings of parent and child language at 6, 10, 14, 18, and 24 months using the Language ENvironment Analysis system (LENA) in a group of typically developing infants. We then examined the relationship between language measures during infancy and follow-up measures of reading related skills at age 5 years, in the same group of participants (N = 53). A subset of these children also completed diffusion and quantitative MRI scans at age 2 years (N = 20). Within this subgroup, diffusion tractography was used to identify white matter pathways that are considered critical to language and reading development, namely, the arcuate fasciculus (AF), superior and inferior longitudinal fasciculi, and inferior occipital-frontal fasciculus. Quantitative macromolecular proton fraction (MPF) mapping was used to characterize myelin density within these separately defined regions of interest. The longitudinal data were then used to test correlations between early language input and output, white matter measures at age 2 years, and pre-literacy skills at age 5 years. Parental language input, child speech output, and parent-child conversational turns correlated with pre-literacy skills, as well as myelin density estimates within the left arcuate and superior longitudinal fasciculus. Mediation analyses indicated that the left AF accounted for longitudinal relationships between infant home language measures and 5-year letter identification and letter-sound knowledge, suggesting that the left AF myelination at 2 years may serve as a mechanism by which early language experience supports emergent literacy.

11.
Neuroimage ; 263: 119641, 2022 11.
Article En | MEDLINE | ID: mdl-36170763

Between 6 and 12 months of age there are dramatic changes in infants' processing of language. The neurostructural underpinnings of these changes are virtually unknown. The objectives of this study were to (1) examine changes in brain myelination during this developmental period and (2) examine the relationship between myelination during this period and later language development. Macromolecular proton fraction (MPF) was used as a marker of myelination. Whole-brain MPF maps were obtained with 1.25 mm3 isotropic spatial resolution from typically developing children at 7 and 11 months of age. Effective myelin density was calculated from MPF based on a linear relationship known from the literature. Voxel-based analyses were used to identify longitudinal changes in myelin density and to calculate correlations between myelin density at these ages and later language development. Increases in myelin density were more predominant in white matter than in gray matter. A strong predictive relationship was found between myelin density at 7 months of age, language production at 24 and 30 months of age, and rate of language growth. No relationships were found between myelin density at 11 months, or change in myelin density between 7 and 11 months of age, and later language measures. Our findings suggest that critical changes in brain structure may precede periods of pronounced change in early language skills.


Brain , Magnetic Resonance Imaging , Child , Infant , Humans , Child, Preschool , Brain/diagnostic imaging , Brain Mapping , Myelin Sheath , Language Development , Protons
12.
Dev Sci ; 25(6): e13323, 2022 11.
Article En | MEDLINE | ID: mdl-36114705

The development of skills related to executive function (EF) in infancy, including their emergence, underlying neural mechanisms, and interconnections to other cognitive skills, is an area of increasing research interest. Here, we report on findings from a multidimensional dataset demonstrating that infants' behavioral performance on a flexible learning task improved across development and that the task performance is highly correlated with both neural structure and neural function. The flexible learning task probed infants' ability to learn two different associations, concurrently, over 16 trials, requiring multiple skills relevant to EF. We examined infants' neural structure by measuring myelin density in the brain, using a novel macromolecular proton fraction (MPF) mapping method. We further examined an important neural function of speech processing by characterizing the mismatch response (MMR) to speech contrasts using magnetoencephalography (MEG). All measurements were performed longitudinally in monolingual English-learning infants at 7- and 11-months of age. At the group level, 11-month-olds, but not 7-month-olds, demonstrated evidence of learning both associations in the behavioral task. Myelin density in the prefrontal region at 7 months of age was found to be highly predictive of behavioral task performance at 11 months of age, suggesting that myelination may support the development of these skills. Furthermore, a machine-learning regression analysis revealed that individual differences in the behavioral task are predicted by concurrent neural speech processing at both ages, suggesting that these skills do not develop in isolation. Together, these cross-modality results revealed novel insights into EF-related skills. HIGHLIGHT: Monolingual infants demonstrated flexible learning on a task requiring executive function skills at 11 months, but not at 7 months. Infants' myelin density at 7 months is highly predictive of their behavioral performance in the flexible learning task at 11 months of age. Individual differences in the flexible learning task performance are also correlated with concurrent neural processing of speech at both ages.


Executive Function , Speech Perception , Infant , Humans , Executive Function/physiology , Speech Perception/physiology , Speech , Learning , Language
13.
Front Hum Neurosci ; 16: 941853, 2022.
Article En | MEDLINE | ID: mdl-36016666

The sensitive period for phonetic learning (6∼12 months), evidenced by improved native speech processing and declined non-native speech processing, represents an early milestone in language acquisition. We examined the extent that sensory encoding of speech is altered by experience during this period by testing two hypotheses: (1) early sensory encoding of non-native speech declines as infants gain native-language experience, and (2) music intervention reverses this decline. We longitudinally measured the frequency-following response (FFR), a robust indicator of early sensory encoding along the auditory pathway, to a Mandarin lexical tone in 7- and 11-months-old monolingual English-learning infants. Infants received either no intervention (language-experience group) or music intervention (music-intervention group) randomly between FFR recordings. The language-experience group exhibited the expected decline in FFR pitch-tracking accuracy to the Mandarin tone, while the music-intervention group did not. Our results support both hypotheses and demonstrate that both language and music experiences alter infants' speech encoding.

14.
Int J Mol Sci ; 23(9)2022 Apr 23.
Article En | MEDLINE | ID: mdl-35563067

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that impairs the control of attention and behavioral inhibition in affected individuals. Recent genome-wide association findings have revealed an association between glutamate and GABA gene sets and ADHD symptoms. Consistently, people with ADHD show altered glutamate and GABA content in the brain circuitry that is important for attention control function. Yet, it remains unknown how glutamate and GABA content in the attention control circuitry change when people are controlling their attention, and whether these changes can predict impaired attention control in people with ADHD. To study these questions, we recruited 18 adults with ADHD (31-51 years) and 16 adults without ADHD (28-54 years). We studied glutamate + glutamine (Glx) and GABA content in the fronto-striatal circuitry while participants performed attention control tasks. We found that Glx and GABA concentrations at rest did not differ between participants with ADHD or without ADHD. However, while participants were performing the attention control tasks, participants with ADHD showed smaller Glx and GABA increases than participants without ADHD. Notably, smaller GABA increases in participants with ADHD significantly predicted their poor task performance. Together, these findings provide the first demonstration showing that attention control deficits in people with ADHD may be related to insufficient responses of the GABAergic system in the fronto-striatal circuitry.


Attention Deficit Disorder with Hyperactivity , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Caudate Nucleus , Genome-Wide Association Study , Glutamic Acid , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , gamma-Aminobutyric Acid
15.
JASA Express Lett ; 2(5): 054401, 2022 May.
Article En | MEDLINE | ID: mdl-35578694

The frequency-following response (FFR) is a scalp-recorded signal that reflects phase-locked activity from neurons across the auditory system. In addition to capturing information about sounds, the FFR conveys biometric information, reflecting individual differences in auditory processing. To investigate the development of FFR biometric patterns, we trained a pattern recognition model to recognize infants (N = 16) from FFRs collected at 7 and 11 months. Model recognition scores were used to index the robustness of FFR biometric patterns at each time. Results showed better recognition scores at 11 months, demonstrating the emergence of robust FFR idiosyncratic patterns during this first year of life.

16.
Front Hum Neurosci ; 16: 793213, 2022.
Article En | MEDLINE | ID: mdl-35431836

Literacy is an essential skill. Learning to read is a requirement for becoming a self-providing human being. However, while spoken language is acquired naturally with exposure to language without explicit instruction, reading and writing need to be taught explicitly. Decades of research have shown that well-structured teaching of phonological awareness, letter knowledge, and letter-to-sound mapping is crucial in building solid foundations for the acquisition of reading. During the COVID-19 pandemic, children worldwide did not have access to consistent and structured teaching and are, as a consequence, predicted to be behind in the development of their reading skills. Subsequent evidence confirms this prediction. With the best evidence-based practice in mind, we developed an online version of a well-structured early literacy training program (Reading Camp) for 5-year-old children. This 2-week online Reading Camp program is designed for pre-K children. It incorporates critical components of the fundamental skills essential to learning to read and is taught online in an interactive, multi-sensory, and peer-learning environment. We measure the participants' literacy skills and other related skills before and after participating in the online Reading Camp and compare the results to no-treatment controls. Results show that children who participated in the online Reading Camp improved significantly on all parameters in relation to controls. Our results demonstrate that a well-structured evidence-based reading instruction program, even if online and short-term, benefits 5-year-old children in learning to read. With the potential to scale up this online program, the evidence presented here, alongside previous evidence for the efficacy of the in-person program, indicates that the online Reading Camp program is effective and can be used to tackle a variety of questions regarding structural and functional plasticity in the early stages of reading acquisition.

17.
Hum Brain Mapp ; 43(12): 3609-3619, 2022 08 15.
Article En | MEDLINE | ID: mdl-35429095

The excellent temporal resolution and advanced spatial resolution of magnetoencephalography (MEG) makes it an excellent tool to study the neural dynamics underlying cognitive processes in the developing brain. Nonetheless, a number of challenges exist when using MEG to image infant populations. There is a persistent belief that collecting MEG data with infants presents a number of limitations and challenges that are difficult to overcome. Due to this notion, many researchers either avoid conducting infant MEG research or believe that, in order to collect high-quality data, they must impose limiting restrictions on the infant or the experimental paradigm. In this article, we discuss the various challenges unique to imaging awake infants and young children with MEG, and share general best-practice guidelines and recommendations for data collection, acquisition, preprocessing, and analysis. The current article is focused on methodology that allows investigators to test the sensory, perceptual, and cognitive capacities of awake and moving infants. We believe that such methodology opens the pathway for using MEG to provide mechanistic explanations for the complex behavior observed in awake, sentient, and dynamically interacting infants, thus addressing core topics in developmental cognitive neuroscience.


Brain , Magnetoencephalography , Brain/diagnostic imaging , Brain Mapping/methods , Child , Child, Preschool , Head , Humans , Infant , Magnetoencephalography/methods
18.
Neuroimage ; 256: 119242, 2022 08 01.
Article En | MEDLINE | ID: mdl-35483648

The 'sensitive period' for phonetic learning (∼6-12 months) is one of the earliest milestones in language acquisition where infants start to become specialized in processing speech sounds in their native language. In the last decade, advancements in neuroimaging technologies for infants are starting to shed light on the underlying neural mechanisms supporting this important learning period. The current study reports on a large longitudinal dataset with the aim to replicate and extend on two important questions: 1) what are the developmental changes during the 'sensitive period' for native and nonnative speech processing? 2) how does native and nonnative speech processing in infants predict later language outcomes? Fifty-four infants were recruited at 7 months of age and their neural processing of speech was measured using Magnetoencephalography (MEG). Specifically, the neural sensitivity to a native and a nonnative speech contrast was indexed by the mismatch response (MMR). They repeated the measurement again at 11 months of age and their language development was further tracked from 12 months to 30 months of age using the MacArthur-Bates Communicative Development Inventory (CDI). Using an a priori Region-of-Interest (ROI) approach, we observed significant increases for the Native MMR in the left inferior frontal region (IF) and superior temporal region (ST) from 7 to 11 months, but not for the Nonnative MMR. Complementary whole brain comparison revealed more widespread developmental changes for both contrasts. However, only individual differences in the left IF and ST for the Nonnative MMR at 11 months of age were significant predictors of individual vocabulary growth up to 30 months of age. An exploratory machine-learning based analysis further revealed that whole brain time series for both Native and Nonnative contrasts can robustly predict later outcomes, but with very different underlying spatial-temporal patterns. The current study extends our current knowledge and suggests that native and nonnative speech processing may follow different developmental trajectories and utilize different mechanisms that are relevant for later language skills.


Speech Perception , Speech , Child, Preschool , Humans , Infant , Language Development , Magnetoencephalography , Phonetics , Speech/physiology , Speech Perception/physiology
19.
Article En | MEDLINE | ID: mdl-35162202

Research on children and adults with developmental dyslexia-a specific difficulty in learning to read and spell-suggests that phonological deficits in dyslexia are linked to basic auditory deficits in temporal sampling. However, it remains undetermined whether such deficits are already present in infancy, especially during the sensitive period when the auditory system specializes in native phoneme perception. Because dyslexia is strongly hereditary, it is possible to examine infants for early predictors of the condition before detectable symptoms emerge. This study examines low-level auditory temporal sampling in infants at risk for dyslexia across the sensitive period of native phoneme learning. Using magnetoencephalography (MEG), we found deficient auditory sampling at theta in at-risk infants at both 6 and 12 months, indicating atypical auditory sampling at the syllabic rate in those infants across the sensitive period for native-language phoneme learning. This interpretation is supported by our additional finding that auditory sampling at theta predicted later vocabulary comprehension, nonlinguistic communication and the ability to combine words. Our results indicate a possible early marker of risk for dyslexia.


Dyslexia , Speech Perception , Adult , Child , Dyslexia/diagnosis , Dyslexia/epidemiology , Humans , Infant , Language , Language Development , Reading
20.
Article En | MEDLINE | ID: mdl-34886481

The first 1000 days represent a unique window of opportunity for second language learning. In two recent studies we demonstrated that Spanish infants' use of second-language (L2) English productive vocabulary and early utterances rapidly increased through the play-based, interactive and highly social SparkLingTM Intervention, which consists of an evidence-based method and curriculum stemming from decades of research on infant language development. Analyzing an expanded and more diverse sample of Spanish infants (n = 414; age 9-33 months) who received the SparkLingTM Intervention, this study examines the variability in L2 production, which was assessed via first-person LENA audio recordings. Infants' age significantly and positively correlated with L2 production, demonstrating an advantage for older infants in the sample. While overall socioeconomic status (SES) was not related to L2 production, very young infants (under two years) who lived in high poverty homes showed faster increases in English production compared to peers who lived in moderate poverty homes. Infants' attendance in the program ("dosage") was also predictive of their L2 production outcomes. Infants across SES have the capacity to begin acquiring two languages in early education classrooms with SparkLingTM through one-hour/day sessions in social environments that engages them through frequent high-quality language input.


Language Development , Multilingualism , Child, Preschool , Humans , Infant , Language , Poverty , Spain , Vocabulary
...